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In this paper we shall show that each f E L.[O, I] (1 <; p <; OC!) has a best L.
approximation from the set of exponential sums, V.(S), provided S is closed. Here
V.(S) denotes the set of all solutions of all n-th order linear homogeneous differen
tial equations with constant coefficients for which the roots of the corresponding
characteristic polynomial all lie in S. We thus extend the previously known
existence theorems which apply only in the special cases where S is compact or
where S = ~.

1. INTRODUCTION

Let S be a subset of the set C of complex numbers. We shall define Vn(S),
n = 1,2, ... , to be the set of all complex-valued functions y defined on the
interval [0, 1] which satisfy some n-th order linear homogeneous differential
equation of the form

o ~ t ~ 1, (1)

where D = dldt is the differential operator and where AI' A2 , ... , An E S. We
shall also define Vo(S) to be the set whose only element is the zero function
and we set

00

V,,(S) = U Vn(S)·
n~1

If Y satisfies (1) but does not satisfy any such differential equation of lower
order we shall say that y is an exponential sum with order n. The n (not
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necessarily distinct) complex numbers Al , A2 , ••• , An will then be called the
essential exponential parameters of y and we shall refer to the set

n
A[y] = U {Ai}

i=1

as the spectrum ofy (with the null set being the spectrum of the zero function.)
For example, every polynomial of degree n is an exponential sum with order
n + I and with the spectrum {O} so that Vn+1({O}) is the set of all polynomials
of degree at most n. The space LAO, 1] with the associated norm, II lip, will
be defined in the usual manner with the understanding that the elements of
Lp[O, 1] may, in general, be complex-valued. Each y from Voo(S) may then be
regarded as an element of each of the spaces Lp[O, 1], 1 ~ p ~ 00.

Our problem may now be stated as follows. Given S ~ C, 1 ~ p ~ 00,

and fE Lp[O, 1] we would like to find a best II lip-approximation to f from
Vn(S), i.e., we would like to find some Yo E Vn(S) such that

Ilf - Yo lip = inf {lif - y lip: y E ViS)}. (2)

By making use of a Taylor series argument, Hobby and Rice [4] have shown
that a solution to the problem exists when S is compact. In the case where
S = IR, de Boor [1] and Werner [5] have independently shown that a solution
exists, with both arguments making use of the fact that the approximating
family Vn(lR) possesses Rice's property Z. In this paper we shall extend these
results by showing that a best II lip-approximation exists whenever S is
closed; in subsequent work we shall consider means for characterizing and
for constructing such a solution.

2. THE CASE OF COMPACT S

In proving the desired existence theorem it is convenient to first establish a
few preliminary results which apply when S is bounded. We shall define the
seminorm II 11M' °~ ex ~ 1/3, on Lp[O, I], 1 ~ p ~ 00, such that

(3)

where
for ex ~ t ~ 1 - ex,
otherwise,

is the characteristic function of the interval [ex, 1 - ex]' When S is bounded,
the seminorms II 11M' 1 ~ p ~ 00, °~ ex ~ 1/3 are actually uniformly
equivalent norms on Vn(S), and the differential operator D, is bounded on
Vn(S) as we see from the following lemma.



80 KAMMLER

LEMMA 1. Letsec be bounded. Then there exists a constant M (depending
only on Sand n) such that

i = 0, 1,... , n (4)

holds true whenever y E Vn(S), 1 ~ p, q ~ 00, and 0 ~ 0: ~ 1/3.

Proof In view of the monotonicity of II Illl.ex with respect to both p and IX

it is sufficient to establish (4) when q = 00, p = 1, and IX = 1/3. By enlarging
S, if necessary, we may also assume that S is compact. Now given A E Sn and
bEen we shall define !!!fn(b, A) to be the unique solution of the differential
equation (I) which satisfies the initial conditions

Di-ly(O) = bi , i = 1,2,... , n. (5)

Then !!!fn(b, A) depends analytically on b, A and vanishes identically on some
nondegenerate interval if and only ifb = 0 (cf. [2, p. 21, 75-76]. Hence if we
restrict b to the surface, BBn, of the unit ball in en we may define

i = 0, I, 2,..., n

since the denominator cannot vanish in this case. We then choose

where Mi is maximaum value of the continuous function Fi as b, A range over
the compact sets BBn and sn, respectively, i = 0, I, ... , n. With this choice of
M we see that (4) holds for all y E Vn(S). I

We note that a bound analogous to (4) is presented in [3, Theor. 1] within
a much more general context. We also point out that the conclusion of the
lemma is no longer valid when S is not bounded. For example, if

yv(t) = yl/2 exp(-vt),

we find that the ratio

v = 1,2,... ,

II Diy. 1100/11 Y. III = vi+l/[l - exp(-v)],

is unbounded as v becomes infinite even when i = O.

y = 1,2,...,

THEOREM 1. Let S be a compact subset of e, and let p, 1 ~ P ~ 00, be
chosen. Then each closed II Illl-bounded subset of Vn(S) is II Illl-compact, i.e.,
given any II Illl-bounded sequence {y.} from ViS) there exists a subsequence
which II Illl-converges to some y E Vn(S).
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Proof In view of Lemma 1 it is sufficient to establish the theorem for
the special case p = 00. Let {Yv} be a II II",-bounded sequence from Vn(S), and
let {bv}, {A,.} be chosen from Cn, sn, respectively, so that

v = 1,2,... ,

where again by !(!fneb, A) we denote the solution of the initial value problem
specified by (1) and (5). Since Sn is compact, we may (by taking a subsequence,
if necessary) assume that {A,.} converges to some Ao E Sn. In view of Lemma 1,
the II II",,-boundedness of {y.} implies the II ILx,-boundedness of {Diyv},
i = 1,2,... , n, and therefore {bv} is bounded. We may therefore (by again
passing to a subsequence, if necessary) assume that {bv} converges to some
bo E Cn. Finally, since !(!fn depends continuously on its parameters we see
that

is the II II",,-limit of {Yv}. I

COROLLARY I. Let S be a compact subset of C, and let p, 1 ~ P ~ 00, be
chosen. Then eachfE Lv[O, 1] has a best II IIv-approximationfrom Vn(S).

Proof Let fE Lv[O, I] be chosen, and let {Yv} be a II IIv-minimizing
sequence for ffrom Vn(S), i.e.,

lim Ilf - Yv Ilv = inf{llf - y Ilv : y E Vn(S)}

Then {Yv} is II Ilv-bounded, and, in view of the theorem, we may (by passing
to a subsequence, if necessary) assume that {y.} has a II IIv-limit y E Vn(S).
Hence, we find

Ilf - y Ilv ,:;; lim [Ilf - Yv Ilv + II y - Yv IIv] = lim Ilf - Yv Ilv

so that y is a best II Ilv-approximation to ffrom Vn(S). I

3. U, V, W-SEQUENCES

We would now like to strengthen the above corollary and obtain an exis
tence theorem when S is closed but not compact. Unfortunately, Theorem 1
cannot be extended to apply to Vn(S) when S is not bounded. For example,
if

uv(t) = exp[-vt] + exp[-v(l - t)],

wit) = sin vt,

o~ t ~ 1,

o~ t ~ 1,

v=I,2,oo.,
(6)

v = 1,2"."



82 KAMMLER

then {uv}, {wv} are both II lloo-bounded sequences from V2(C), but no sub
sequence of either {uv} or {wv} is II liro-convergent. Indeed, these two sequences
illustrate fundamentally different ways in which noncompactness can be
troublesome.

In order to make these intuitive ideas more precise, we shall introduce
definitions for three distinct types of sequences which may be extracted from
Vn(C). We shall say that {Yv} is a U-sequence, a V-sequence, or a W-sequence
according as the corresponding sequence of spectral sets A[yv], v = 1,2,... ,
satisfies the respective conditions

or both of

lim inf{1 Re A I: AE A[yvl} = + 00,

sup \1 A I: AE vQ A[yv]\ < +00,

lim inf{1 1m A I: AE A[Yvn = +00,

sup jl Re A I: AE vQ A[yv]! < +00.

(7)

(8)

(9)

Examples of U, W-sequences are provided by {uv}, {wJ, respectively, as given
by (6). For large v, the function Uv is essentially nonzero only near the end
points of [0, l} (as suggested by the U-shape), and this behavior is typical of
all II lip-bounded U-sequences which (as we shall see) converge uniformly to
zero on compact subsets of (0, 1). On the other hand, for large v the function
W v oscillates throughout the whole interval [0, 1] (as suggested by the W
shape), and this behavior is typical of all W-sequences. Indeed, (as we shall
see) the seminormsll lip."" 0 ~ ex ~ 1/3, are uniformly equivalent on the
terms of a W-sequence. Finally, we note that any sequence {vJ extracted
from Vn(S) is a V-sequence provided that S is bounded. From Theorem 1 we
see that from any II lip-bounded V-sequence, we can extract a II lip-convergent
subsequence which, in view of Lemma 1, is also II lloo-convergent, 1 ~ p ~ 00.

Although a general sequence {yJ from Vn(C) need not be either a U, V, or
W-sequence, we may always extract from {Yv} a subsequence (which we shall
continue to call {Yv}) that may be decomposed in the form

v = 1,2,... , (10)

where {uJ, {vv}, and {wv} are U, V, and W-sequences from Vn (C), Vn (C), and
1 2

Vn.(q, respectively, with n1 + n2 + na ~ n. Indeed, if Yv = 0 for infinitely
many indices v, than the zero sequence (which may be regarded as either a
U, V, or W-sequence) may be used for {uv}, {vv}, and {wv} thus providing the
desired decomposition of the zero subsequence of {yJ. Otherwise, (by passing
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to a subsequence, if necessary) we may assume that A[yv] has exactly m,
1 ~ m ~ n, distinct elements for each v. We may then write

v = 1,2'00"

and (by again passing to a subsequence, if necessary) assume that for each
1= 1,2,... , m we have either

or both of

lim IRe Alv I = +00,

lim sup I Alv I < +00,

lim I1m Alv I = + 00,

lim sup I Re A1v I < + 00.

(11)

(12)

(13)

Upon comparing (7), (8), and (9) with (11), (12), and (13) respectively, we
see that the desired decomposition follows at once from the well-known
form for expressing the solutions of the differential equation (1).

With these concepts in mind, we may now establish the following lemma
which precisely characterizes the important properties of U, V, W-sequences
which are essential for the proof of the desired existence theorem.

LEMMA 2. Let {uJ, {vJ, and {wJ denote U, V, and W-sequences from
Vn(C), n = 0, 1'00' .

(i) fr {uv + Vv + wJ is a II lip-bounded sequence from Vn(C) for some
p, 1 ~ p ~ 00, then the components sequences {uv}, {vv}, and {wv} are all
II lip-bounded.

(ii) If {vv + wJ is a sequence from Vn(C), then there exists a constant
M > 0 (depending only on the sequence) such that

v = 1,2'00" (14)

holds true for all p, ex with 1 ~ p ~ 00 and 0 ~ ex ~ 1/3 (again II 11M is the
seminorm defined by (3)).

(iii) If {uv} is a II lip-bounded sequence for some p, 1 ~ p ~ 00, then

lim II UV Iloo.a = 0 (15)

for every ex with 0 < ex ~ 1/3.

(iv) If {uv + wv} is a sequence from Vn(C) and fE Lp[O, 1] for some
p, 1 ~p ~ 00, then

lim infllf+ Uv + Wv lip;;?: II flip . (16)
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Proof We shall give a proof by induction on n. The lemma certainly
holds when n = 0 since the zero sequence is the only sequence which may be
extracted from Vo(C)'

We must now show that if the lemma holds in Vn-I(C) then it also holds in
Vic), n = 1,2,.... In so doing it is important to note that in proving each
of (i}-(iv) we lose no generality in passing to subsequences whenever it is
convenient to do so. For example, if (i) fails for sotne sequence {u. + v. + w.}
from Vic), then (by passing to a subsequence, if necessary) we may assume
that at least one of lim II u. 11j) , lim II v. 11j) , and lim II w. 11j) exists and is +00 so
that (i) also fails for every subsequence. Thus it is sufficient to show that (i)
holds for some subsequence of every given sequence {u. + v. + w.}.
Analogous considerations hold in each of (ii}-(iv). We shall divide the proof
of the induction step into four sections corresponding to the statements
(i}-(iv).

Section (i)

Let {u. + v. + w.} be a sequence from Vn(C) with II Ilv-bound B. We must
show that some subsequence satisfies (i). Now if u. + v. + w. = u. for
infinitely many indices v, then we can extract from {u. + v. + w.} a U
subsequence which clearly satisfies (i) (the corresponding terms v., w. being
zero for all but finitely many v.) Analogous considerations hold if
u. + v. + w. = v. or u. + v. + w. = w. for infinitely many v. We may
therefore restrict our attention to the remaining two cases where either
u. = 0, v. ¥= 0, w. ¥= 0 for infinitely many v or where u. ¥= 0, v. + w. ¥= 0
for infinitely many v. Indeed, since neither of these situations can arise in
Vic) the validity of (i) in VI(C) is thereby established, and we shall assume
in the remainder of this section that n ~ 2.

Suppose then that {v. + w.} is a sequence from Vn(C) with II 11j)-bound B
and that Vv ¥= 0, w. ¥= 0 for each v. Since the order of v. + W v is at most n,
and since v. , Wv both have order at least 1, it follows that v. , w. E Vn - I (C)
for all but a finite number of indices v, and we may therefore assume that
{v.}, {w.} are V, W-sequences fromVn_I(C). We shall define the auxiliary
sequences

v.* = v./11 v. 11j) ,

w.* = w./11 v. 11j) ,

v = 1,2, ,

v = 1,2, ,

so that {v. *} is a II IIv-normalized V-sequence. We may therefore assume (by
passing to a subsequence, if necessary) that {v. *} II Ilv-converges to some
v* E Vn-I(C) with II v* Ilv = 1, and that the real sequence {II v. Ilv} has some
(possibly infinite) limit. Hence, by using the inductive hypothesis that (iv)
holds in Vn-I(C) we find



APPROXIMATION BY SUMS OF EXPONENTIALS

B ? lim sup II Vv + Wv 11f>

? {lim II VV 11f>} . {lim inf II VV* + Wv* 1If>}

= {lim II Vv 11f>} . {lim inf II v* + Wv* 11f>}

? {lim II VV lip} . II v* 11f>

= lim II VV lip

85

so that {vv} and therefore {wv} must be II lip-bounded. Thus (i) holds in this
case.

Suppose next that {uv + Vv + wv} is a sequence from V,,(C) with II 11f>-bound
B, and that Uv #- 0, Vv + Wv #- 0 for each v. Then we may assume that {uv}
and {vv + wv} are sequences from V,,-l(C), and since (from the induction
hypothesis) (ii) holds in Vn-1(C) there is a constant M > 0 such that (14)
holds with ex,O < ex ~ 1/3, being held fixed. Moreover, since (iii) holds in
V,,-l(C) we see from (15) that

II Uv IIp.<> ~ II UV Ilpl(2M)

for all sufficiently large v. Using this together with (14) and the triangle
inequality we find

II Uv lip ~ II UV + Vv + Wv 11f> + II VV + Wv 11f>

~ B + Mil Vv + Wv IIp,<>

~ B + M . {II UV + Vv + Wv 112>,<> + II UV 11M}
~ B . (1 + M) + II UV IIpl2

for all sufficiently large v. Hence {uv} is II lip-bounded and therefore {vv + wv}
is also [I lip-bounded. But since (i) holds in Vn_1(C), this implies that {vv}, {wv}
are individually II lip-bounded and therefore (i) holds in this case also. Thus
the induction step for (i) is complete.

Section (ii).

Let {vv + wv} be a sequence from Vn(C). In seeking to establish (ii) we may
assume, with no loss of generality, that II Vv + Wv 1100 = 1 for each v. Next, if
{{3v} is any real number sequence and

Ov(t) = exp(i{3vt), o~ t ~ 1, v = 1,2,...,

where i2 = -1, then I Ov I - 1 so that the sequence {Ov[vv + wv]} satisfies (ii)
if and only if {vv + wv} does. Hence, after properly selecting the phase para
meters {f3v} and factoring out the appropriate factors {Ov} we may also assume
that lim inf II VV 1100 > 0 and that {wv} is a W-sequence from Vn-1(C). Moreover,
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since we have already shown that (i) holds in Vn(C) the assumption that
Ii Vv + WV II", = I, v = 1,2,... , implies that both {vv} and {wJ are II 11",
bounded. Thus (by passing to a subsequence, if necessary) we may further
assume that {vv}III",-converges to some v E Vn(C) with II v !I", > O.

Under these restrictions, we see that when n = 1 we have W v = 0 for
each v so that (ii) holds by virtue of Lemma I. On the other hand, when
n ;:?o 2 we may use the induction hypothesis that (iv) holds in Vn - 1(C) together
with the Holder inequality to see that

lim inf infinum II VV + Wv :!p.~/II Vv + Wv ip
J) PIC(

;:?o lim inf infinum Ii Vv -;- Wv ::l.il Vv + Wv ::'" ,
V a

= lim infli Vv + W v '11.1/3,
v

." lim infl; v + Wv ::11/3'v •

;:?o Ii V Pl.l/3 > 0,

where the infinum is taken over the sets where 1 ~ p ~ CfJ and 0 ~ a ~ 1/3.
From this inequality we immediately infer the existence of a constant M > 0
such that (14) holds whenever 1 ~ p ~ 00 and 0 ~ a ~ 1/3. Thus the
induction step is complete for (ii).

Section (iii)

First of all, since any II lip-bounded U-sequence {uv} is also II ':l-bounded,
it is sufficient to prove (iii) under the hypothesis that p = 1, and this being
the case we may further assume that II uv ::1 = 1 for each v. We now select
the sequences {Yv}, {f3v} from C such that f3v E A [uvl, v = 1,2,... (so that
lim I Re f3v I = +00) and such that if

8v(t) = Yv • exp(f3vf), o~ t ~ I, v = 1, 2,... ,

then uv may be decomposed in either of the forms

with {vv *} being a; ::l-normalized V-sequence, with {uv*} and {u~><} =

{8v ' [uv* --:- wv*]} being U-sequences, with {wv*} being a W-sequence, and
with the order of uv being the sum of the orders of either uv*, vv *, and Wv*
or of vv* and u:* for each v. Since {vv *} is II ill-normalized, we may assume
(by passing to a subsequence, if necessary) that {vv*} is II !'l-convergent to
some v* E Vn(C) with II v* 111 = 1. Finally, we may further assume that
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Re f3v > 0 for each v (since in showing that (iii) holds we may always replace
uvCt) by uv(l - t) for any v) so that lim Re f3v = + 00.

With these restrictions in mind, we now let a be chosen with 0 < a ~ 1/9.
Using the inductive hypothesis that (iv) holds in Vn-I(C) we find

1 = lim II UV 111 ,

?: lim sup JI~" I Uv I dt,

?: lim sup 118v(1- a)I' JI~"I uv* + vv* + wv* I dtl,

?: {lim sup I 8v(1 - a)l} ·llim inf JI~"I UV * + v.* + Wv* I dtl,

?: {lim sup I 8v(1 - a)l} .r I v* I dt,
1-"

and since II v* 111 = 1 we infer the existence of a constant B > 0 such that

I 8v(1 - a)1 ~ B,

This being the case, we have

v = 1,2,....

lim sup II 8vvv* 11",.2" ~ II v* II", . B . lim sup Iexp(-f3va)I = 0

and since {uv} is II Ill-bounded this implies that {u~*} is II 111,2,,-bounded. But
since {u~*} is a U-sequence from Vn-I(C) we may use the induction hypoth
esis that (iii) holds in Vn-I(C) to see that

lim sup II UV 11",.3" ~ lim sup II 8v . Vv * 11",.3" + lim sup II uv** 11",.3" = o.

Thus the induction step is complete for (iii).

Section (iv)

We shall first establish (iv) for the special case where Uv = 0 for each v.
We may assume (by passing to a subsequence, if necessary) that {II!+ Wv ILv}
has a finite limit so that {wv} is II lip-bounded. We now select the real number
sequence {f3v} in such a manner that if

o ~ t ~ 1, v = 1,2,... ,

then Wv may be decomposed in either of the forms

Wv = 8lv[Vlv + WI.],

= 8lvVlv + wi,. ,
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where {Vlv} is a V-sequence and {w Iv}, {wt.,} are both W-sequences from
Vn-I(C). Since I Blv I = 1 for each v and since we have already shown that
(i) holds in Vn(C), the sequences {Vlv}, {wIJ, and {wt.,} are allil 11j)-bounded.
We may therefore assume (by passing to a subsequence, if necessary) that
{vlv} is II IIeo-convergent to some VI from Vn(C). Next, by using the triangle
inequality (and the fact I Blv I == 1 for each v) we have

so that

lim Ilf + BlvVI + wi., !Ij) = lim lif + Wv 11j)

and thus in showing that (iv) holds we lose no generality in assuming that
Vlv = VI for each v.

In a similar manner we decompose the II 11j)-bounded sequence {wt.,} from
Vn-I(C), and by proceeding in this manner we see that it is sufficient to
establish (iv) in the special case where

where Vz is a fixed element of Vn-l+I(C), where

v = 1,2,... , (17)

°:( t :( I, v = I, 2, ... , (18)

and where {f3zv} is a real number sequence with

lim I f3 zv I = +00 (19)

for each 1= 1, 2, ... , k with k :( n.
Finally, since the class of finite linear combinations of characteristic

functions of subintervals of [0, 1] is dense in Lj)[O, 1], it is sufficient to
establish (iv) whenever f, VI' V2 , ... , Vk are all constant multiples of the
characteristic function of a single subinterval of [0, 1], or more simply, when
ever f, VI , V2 '00" Vk are all complex constants (with this last step involving a
simple change of variables, if necessary.) But in this special situation we may
use (17)-(19) together with HOlder's inequality to obtain

lim Ilf + Wv 11j) ~ lim inf ( If+ z~ vzB zv Idt,

~ lim inf I([J+ tl vzBzv] dt I,

= lim inf If+ f vz[Bzll) - 1]/f3zv I,
Z~l

= If I =llfllj)'
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Thus we have shown that (iv) holds in Vn(C) in the special case where
Uv = °for each v.

We shall now remove this restriction. Indeed, in the general case we may
again assume (by passing to a subsequence if necessary) that {III+ Uv + Wv lip}
has a finite limit. Since we have shown that (i) holds in Vn(C) this implies
that {uJ and {wv} are both II lip-bounded. Finally, by using the fact that (iii)
and the above special case of (iv) all hold in Vn(C) we have

lim III+ Uv + W v lip ~ lim inflll+ Uv + W v lip,,,

~ lim inf{111+ Wv liM - II UV 11 M}

= lim inflll + Wv lip,,,

~ 11/111',"

for all CI:, °< CI: ~ 1/3, and from the arbitrariness of CI: we conclude that (16)
must hold. This then finishes the induction for (iv) and so completes the
proof of the lemma. I

It would be desirable to simplify the rather long and tedious proof of
Lemma 2, and since (i), (iv) are the only sections needed for the desired
existence theorem it would be nice to prove these results independently.
Unfortunately, the above induction proceeds cyclically (i.e., to prove that
(i) holds in Vn(C) we make use of the fact that (i)-(iv) all hold in Vn- 1(C)'
and then use the fact that (i) holds in Vn(C) in showing that (iii)-(iv) also
hold in Vn(C), etc.), and we have been unsuccessful in proving (i), (iv) by
any other argument.

4. THE CASE OF CLOSED S

Using Lemma 2 we may now prove the following basic existence theorem.

THEOREM 2. Let S h C, 1:'( p ~ 00, and n = I, 2'00.. Then every
IE Lp[O, 1] has a best II lip-approximation Irom Vn(S) ifand only ifS is closed.

Proof Let S be closed, let IE Lp[O, 1], and let {Yv} be chosen from
Vn(S) in such a manner that

lim III - Yv lip = infinum{111 - y Ill' : y E Vn(S)}.

We may assume (by passing to a subsequence, if necessary) that {Yv} may
be decomposed in such a manner that

v = 1,2'00"
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where {u.}, {vv}, {wJ are U, V, W-sequences, respectively, from Vn(S). Since
{yJ is II II",-bounded, we infer from Lemma 2(i) that the component sequences
{uv}, {vv}, {wv} are all II II",-bounded, so that in view of Theorem 1 we may
further assume (by again passing to a subsequence, if necessary) that
{vv} II II",-converges to some v E Vn(S). This being the case we may use
Lemma 2(iv) to obtain.

lim Ilf - Yv II", = lim Ilf - v - Uv - WV II", ;;;: Ilf - v II",

so that v is a best II II ",-approximation to f from Vn(S), Thus the closure of
S is a sufficient condition for everyf E L",[O, 1] to have a best II II",-approxima
tion from ViS).

On the other hand, the necessity of this condition is apparent (e.g., if
,\ 1= S is a limit point of S, then the function

f(t) = exp(M),

has no best II II ",-approximation from Vn(S)) so that the proof is complete. I

COROLLARY 1. Let S ~ C be closed, let I ~ p ~ 00, and let n = 1,2,....
Then every fE L",[O, 1] has a best II II ",-approximation from the set vnr(s)
of all real-valued exponential sums Y contained in Vn(S).

Proof Replace Vn(S) by vnr(s) in the proof of the theorem. I
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